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(X the Electromagnetic Field in a Cavity
Fed by a Tangential Electric Field

in an Aperture in its Wall
Joseph R. Mautz, Senior Member, IEEE

Abstract—Heretofore, the electromagnetic field produced by a
specified tangential electric field in an aperture in the wall of an
arbitrarily shaped cavity has most often been expanded in terms
of cavity modes. An alternative approachj that of the electric field
integral equation is presented. In this approach, the cavity field
is expressed as the field of a surface density of tangential electric
current, or a surface density of tangential magnetic current>
or a combination of surface densities of tangential electric and
magnetic currents on the boundary of the cavity. Each surface
density is characterized by a single tangential vector function
which is determined by the integral equation requiring that
the part of the electric field tangent to the boundary of the
cavity must reduce to the specified tangential electric field in the
aperture and zero elsewhere on the boundary of the cavity. The
electric field integral equation method is specialized to more easily
determine the field inside an arbitrary cylindrical cavity excited
by a tangential electric field in an aperture in its lateral wall. The
method is further specialized to a circular cavity.

I. INTRODUCTION

cONSIDER an arbitrarily shaped cavity that is source-
free and bounded by a closed surface S that is perfectly

conducting everywhere except in an aperture. The boundary
conditions require that the tangential electric field vanishes on
the perfectly conducting part of S and is equal to a specified
vector function in the aperture. The problem is to find the
electromagnetic field in this cavity. It is of particular interest
to find the tangential magnetic field in the aperture because
this field is needed to carry out the generalized network
formulation for aperture problems whereby each aperture
that provides electromagnetic communication between regions
such as cavities, waveguides, and half spaces is closed with an
infinitely thin perfectly conducting plate, a magnetic current
sheet ill is placed on one side of the plate, –M is placed on
the other side, and the tangential magnetic field on one side
of the plate is set equal to that on the other side [1].

The usual method of solution is to express the electric field
in the cavity as a linear combination of resonant electric fields,
and to express the magnetic field as a linear combination
of resonant magnetic fields. This method, called the modal
expansion method, is advocated in [2, Ch. 5], [3, Ch. 3],
and the references cited therein. The modal expansions of the
electric and magnetic fields in a bounded region are concisely
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given by [4, (4a) and (4b)l and supporting equations [4,
(5)-(17)]. Aside from two minor errors (“ii . ev = O“ does
not belong in [4, (6b)] and e. should be replaced by Ev in
[4, (9b)]), the modal expansion method is clearly described
in [4]. Disadvantages of the modal expansion method will be

pointed out in Section VI.
An alternative method called the EFIE (electric field integral

equation) method is presented to obtain the field inside an
arbitrarily shaped cavity due to a specified tangential electric
field in an aperture. In this method, the cavity field is expressed
as the field of a surface density of tangential electric current,
or a surface density of tangential magnetic current, or a combi-
nation of surface densities of tangential electric and magnetic
currents on the boundary of the cavity. The latter field is
obviously source-free inside the cavity. The above surface

density or combination of surface densities is characterized

by a single tangential vector function which is determined
by satisfying the boundary condition stated in the abstract.
This condition gives an integral equation that is similar to the

electric field integral equation encountered in the problem of
scattering of an exterior field by a perfectly conducting closed
surface. Variations of the EFIE method were used in [51 for the
two-dimensional cavity region of a thick slit, in [6] for a small
aperture in a cavity, and in [7, Section 8] for an aperture in
one of the end faces of a cylindrical cavity. Although the finite
element method [8] is well-suited for inhomogeneous regions

and the modal expansion method [4] is appropriate for regions
containing volume sources, the EFIE method is more suitable
and efficient for homogeneous geometries where the excitation
consists of a specified tangential electric field on the boundary
rather than volume sources.

In Section H, the EFIE method is specialized to more easily
determine the field inside an arbitrary cylindrical cavity excited
by a specified tangential electric field in an aperture in its
lateral wall. In Section III, the EFIE method is used to obtain
a novel solution for the field inside a circular cylindrical cavity
fed by a specified tangential electric field in an aperture in its
lateral wall.

II. THE ELECTRIC FIELD INTEGRAL EQUATION

METHOD FOR A CYLINDRICAL CAVITY

The field in a cylindrical cavity excited by a specified
tangential electric field in an aperture in one of its end faces
was obtained in [7, Section 8]. In the rest of the present section,
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the EFIE method is specialized to more easily determine the

field in a cylindrical cavity excited by a specified tangential

electric field in an aperture in its lateral wall.
Consider the cylindrical cavity that extends from z = O to

z = L along its z-axis and whose wall contour in the transverse

xy-phme is C. In its lateral wall, this cavity has an aperture
in which the tangential electric field EA is specified

EA = Lq@,z) + H3AZ(1, 2’) (1)

A

where 1 and 2 are the unit vectors in the 1-and z-directions

and 1 is a curvilinear coordinate measured along C. Of course,

EA1 = EAZ = Oon the wall, which is assumed to be perfectly

conducting.

In the EFIE method, the electric and magnetic fields

and ll(r-) inside the cylindrical cavity are expanded as
modes

E(T) = SE;”(T)+ ~ E;E(r)
pdl p=l

E(r)
axial

(2)

(3)

where P is a sufficiently large integer. Also, E~M (r-) and

llTM (r) are the electric and magnetic fields of the surface

de;sity iJp (1) cos(kPz) of electric current on the associated
waveguide wall. This wall is the lateral wall of the cavity
extended to —cc in the negative z-direction and to +cc in
the positive z-direction. In (2) and (3), E~E(T) and ll~E(T)
are the electric and magnetic fields of the surface density
2N$ (1) sin(kPz) of magnetic current on the associated wave-
guide wall. We choose

kp= p<, p=o,l,2,..., P (4)

‘“(T-) and EfE(T-) willso that the tangential components of Ep
vanish at z = O and z = L (look ahead at (13) and (14)). By
using extended lateral wall currents that go from z = –@ to
z = co, end face currents are no longer required.

The fields H~M (r-), E~”(T), E~E(r), and lI~E(r-) are

given by [9, Section (3-12)]

HTM(7-) = v x (2JJP
P

“ ‘Nf Cos (kpz))

l?;’’(.) = & x H;’’ (.)

“ ‘Esin (lGp,Z))ETE(T) = –V X (m#P
P

H;E(r) = ~;:—v x E:E(r)

where p is the permeability, c is the permittivity,
time dependence is assumed. The quantities @~M
are given as functions of curvilinear coordinate; n and 1 by

~~”(n, 1) = ~/C Jp(l’)lZ$)(kPlp – p’l)hl(no, l’)dl’ (9)

/
$!$E(7L,1) = + ~ Mp(l’)Hf)(kplp – p’\)hl(no, l’)dl’. (10

Here, n is such that (n, 1, z) form a right-handed orthogonal

curvilinear coordinate system. On C, the n-direction is out-

ward from the cavity and n = no where no is constant over all

C. In (9) and (10), @2) is the Hankel function of the second

kind of order zero, p is the radius vector from the origin in the
transverse plane to the point whose curvilinear coordinates are
(n, 1) in the transverse plane, p’ is the transverse radius vector
from the origin to the point on C whose curvilinear coordinates
are (n., 1’), and hl is the metric coefficient [10, (162) on p.
496] associated with” 1. Moreover,

where k = w@.

The expressions of (5)–(8) in the curvilinear coordinate

system (n, 1,z) are [10, (166)]

where q = ~ and hn and hl are the metric coefficients

associated with n and 1,respectively. Now, $~M and ~~~
satisfy

vz$;~~ + k:@:M = o (16)

T@p ‘E + k&:E = o. (17)

Equations (16) and (17) with V2 given by [10, (167)] simplify
the ~-components of E~”(r) and lI~E(r-) of (13) and (15):
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Substituting (18) and (14) into (2), one has

(20)

A Fourier series expansion of (1) is

in which

{

1, p=o
Ep =

9J, p=l,2, . . . .
(24)

Requiring that the 1- and z-components of (20) reduce to those
of EA of (21) on the lateral wall of the cavity where n = no,
one has

Substitution of (9) into (26) gives the integral equation

where p is now the transverse radius vector to the point (n., 1).

(27) is an integral equation that can be solved numerically for
Jp. This integral equation is similar to the electric field integral
equation encountered in the two-dimensional problem of TM
scattering by a perfectly conducting cylinder.

As for the quantity [~~~E(n, z)] ~=mo in (25), differentiat-

ing both sides of (10) with respect to n, letting ~ operate on
/_.

H~2) rather than on the result of integration, and then letting

n approach no from inside the cavity, we see that

[1

t%J~E(n, 1) = ~

thz 4j
n=n~

. lim

{J

~ (2) 1JIP(l’)XHO(kPlp – p’1) hl(no, 1’) dl’ .
n-no c

(28)

Substitution of (28) into (25) gives

The quantity ~~~~~ (no, 1) is obtained by substituting the
solution Jp(1’) of (27) into (9) and then differentiating (9)
with respect to 1. Once this is done. the entire right-hand side
of (29) is known. In the limit as n approaches no from inside
the cavity, (29) becomes [11, Section 3.1.2]

;M(l) + , 1 /[ M,(t) :H$)(kplp – P’1)
4jhm(no, 1) c 1 rc=no

jkpq &/#N1(?@ /)
. hl(no, i’) dl’ = E.Atp(~)– khl(nO, ~)

(31 “ ’30)

In contrast to that in (29), the integrand in (30) is not defined
at 1’ = 1. The integral in (30) must be evaluated by deleting a
section of C containing the point 1 and passing to the limit as
the length of this section approaches zero. Equations (29) and
(30) are two different forms of the same integral equation. This
integral equation is similar to the electric field integral equation

encountered in the two-dimensional problem of TE scattering
by a perfectly conducting cylinder when the scattered field
is expressed as the field of z-directed magnetic current on
the surface of the cylinder. The integral equations (27), (29),

and (30) can be solved by a numerical procedure such as the
method of moments [12].

The numerical solutions for J, and NIP are substituted
into expressions (9) and (10) for ~~hf and 4$E. These

‘Nf(r), ll~M(T-), @E(r), and @E(r)tip’s determine ED
according to (18), <12), (14), ‘and (19), respectively. Finally,

ETM (r), H~hl (r), EfE(T), and lZ~E (r) are substituted intoP
expressions (2) and (3) for the electric and magnetic fields in

the cavity.

III. THE ELECTRIC FIELD INTEGRAL
EQUATIONMETHOD FOR A CIRCULAR CAVITY

Consider the special case where the cylindrical cavity in
Section II is the circular cavity of radius a bounded by end
faces at z = O and z = L and the lateral wall at p = a.
The usual cylindrical coordinates (p, @,z) are used throughout
Section III. Equation (1) specializes to

EA = ~E.40(@, Z) + ~E.4z(d, z). (31)

Equations (2)–(8) remain unchanged. However, J,(/) and
Mp(l) specialize to J,(@) and AIP(~) so that (9) and (10)
become

where kp is given by (11 ‘).
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Equations (12), (18), (14), and (19) reduce to, respectively,

(--/58$J:E A (3+;E
E:E(T) = —+ Cj———

i
sin(kPz) (36)

p a+ ap

Substituting (35) and (36) into (2), one has

A Fourier series expansion of (31) is

P

$7=0

(38)

(39)

where EA@P(o) and E-A~P(4) are given by (22) and (23) with

1 replaced by #. Requiring that the 4- and z-components of

(38) reduce to those of ~A of (39) on the lateral wall of the

cavity where p = a, one obtains, using (32) and (33), the

integral equations

where p is the transverse radius vector to the point (a, ~) in

(40) and (p, o) in (41), and “p ~ a-” means that p approaches

a from the interior.

Consider (40). Fourier series expansions of JP(4) and

~.4ZP(0) ~e

where the 13JP0 ancl l?zpo terms are to be omitted. In view

of the addition theorem for Hankel functions [9, (5–1 03)], the

approximation

Hqkplp – p’1) = ~{ EnHA2)ocpa)Jn(kpP)o
n=O

. Cos(n(lj – ~’))}, p < a (44)

is introduced where N is a large integer and en is given by

(24). On the left-hand side of (44), p and p’ are the transverse

radius vectors to the points (p, q$) and (a, 4’), respective] y.

Substituting (42), (43), and (44) with p a a– into (40) and

performing the integration, one finds that

x H~2)(kpa)Jn(kpa) }

( )xjk N—_—
&l ~=o

{Az,n Cos(nq$)+ j3,Pn sin(n~)}. (45)

Substituting (42) and (44) into (32), one sees that #J~h~(p, 4) is
the left-hand side of (45) with J. (kPa) replaced by Jm(kPp).

Equivalently, @~M(P, 4) is the left-hand side of (45) with

the nth term multiplied by Jn (kPp) / ~~ (kPa). Therefore,

@TN~(p, ~) is the right-hand side of (45) with the n’h term
m~ltiplied by Jm(kPP)/~~ (kPa):

n=O

where

‘::=(%iLJA- ’47)
‘;:=(%iLJBzpn’48)

Consider (41). Fourier series expamions of ~P(#) and

~Af4p(#) ‘e

Mp(@) = ‘f {AJIpn cos (T@) + BiuP. sin(wb)} (49)

n=o
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N

Substituting (44), (46), (49), and (50) into (41), one obtains

( )x7ra

~
N {{AMp~ COS(W5)+ BMp. sin(wb)}

72=0

Substituting (49) and (44) into (33), one sees that ~~E(p, +] is

the left-hand side of (51) with ,kPJ~(kPa) replaced by Jn (k@p).
Equivalently, @~E(p, ~) is the left-hand side of (51 j with
the r~~htem multiplied by Jn (kPP) / {k~ ~~ (k~a,) }. ‘herefore~

‘@~E(p, 4) is the right-hand side of (51) with the nth term
multiplied by Jn (kflP)/{kP~~ (kPa)}:

where

The results obtained in Section III can be concisely stated.
NameIy, the electromagnetic field (ll(r-), H(r)) in the circular
cavity is given by (2) and (,3) with H~h~ (r), 1$~’1 (r), E~E (T),
and 17y (T-) given in terms of v~kr and @~E by (34)–(37)

where q!JPTM and +:E are given by (46) and (52).

IV. llIRECT SOLUTION OF THE HELMHOLTZ EQUATION

‘N1 of (46)–(48) and *?E ofIn this section, the quantities +P

(52)-(54) will be verified by direct solution of the Helmholtz
equation. In this solution, there is no explicit reference to

any surface current density. The expansions (46) and (52) for
~$~f and +? are, with the Ap~’s and the Bpn’s equal to

unknown constants, valid from the onset because each of the

functions Jn (kPp) cos(nq$) and Jn(kpp) sin(n~) satisfies the

Helrnholtz equation and the space of their collection for (n =

0,1,’2,... ,J~) and (p = O, l,Z,. . . ,F) becomes complete as

both fV and p approach infinity. Note that although (46) and

(52) are valid everywhere inside the circular cylindrical cavity,
they are valid only for p < P~in inside an arbitrary cylindrical
cavity where PHliZlis the value of p at the boundary point
closest to the ,z-axis. Therefore, the method described here,
that of direct solution of the Helmholtz equation, is valid only
for a circular cylindrical cavity.

In the method of direct solution of the Helmholtz equation,

the Apn’s and the Bpfi’s in (46) and (52) are evaluated by
requiring that the @ and z-components of the electric field
in the cavity reduce to those of 13~ on the lateral wall

$t~n~ 0 S ~ < ~). Using (39), (43), (50), and (38), one

N

= ~ {A~p~ cos(n@) + ~@p~ sin(nd)} (55)

Substitution of (46) and (52) into (55) and (56) leads to (47),
(48), (53), and (54), thus verifying ~~~[ of (46)-(48) and @~E

of (52)–(,54).

V. THE MODAL EXPANSION METHOD

In this section, the modal expansion method is used to verify
the EFIE solution presented in the Iast paragraph of Section

111.The modal expansion method was used in [4] to find the

electric and magnetic dyadic Green’s functions of bounded

regions. A detailed description of that method is contained in

[4] where the bounded region is a cavity excited by volume

distributions of electric and magnetic currents J and M inside
the cavity in addition to a specified tangential electric field on
the boundary surface S of the cavity. Setting J and ill to zero

and replacing ii x E(T’) by n x ~A (T’) in [4, Eqs, (21) and

(23)], one ofxaim the foIlowing expressions for the electric
and magnetic fieIds E(r) and II(r-) in the cavity:

+7

E(r) = –
/

ii X ~,4(’#) v’ X G, (r’ [ r) ah’ (57)
s

where fi is the unit normal vector that points outward from

S. Also, V’ x ~e and ~m are giv~ by [4, (22) and (24)].

Substituting these V’ x & and Gm and (39) into (57)
and (58), using (50), (43). and [4, (26)–(28)], and finally

interchanging m and n, one obtains
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“c”$’z)’g%-’a
jka2 cos(kp2)

“ (spnf&J ~

(60)

where n=0,1,2, . . .. Nandp= 0,1,2, . . . , P. Also, C4Pn

and C~p~ are the quantities in brackets on the right-hand sides
of (50) and (43), respectively. Furthermore,

m

sp. =2~ ‘
x.m J.(x.mp/a)

~=~ (Xnm - k~a2)Jn+l(~mm)
(61)

SP. =25
Jn(znm,p/a)

Znm(Z\m - k?a2)Jn+l(~nm)
(62)

m=l

{-

–2
s~. = ~2a2~ n=o

O,p n=l,2, . . . }

where Xnm is the mth positive root of Jn ad x~m is the

mth positive root of J:. Equations (61)–(63) are valid for
n = 0,1, 2,....

Using [13, (54)-(57) on p. 72]1 and [14, Formulas 9.1.27],
one obtains

Sp. =
Jn (&P)
Jn(kPa)’

Osp<a (66)

s,~=*(spn- (:)”) ‘<p<a ’67)

S;n = Jn(kPP)
kPaJ~(kPa)’

05p5a (68)

$’.=+ (’%(:)”)
05p Sa, (69)

Equations (66)–(68) are valid for n = O, 1,2, . . .. However,
(69) is valid only for n = 1,2, . . .. According to (64), ~~o = 0.
Substituting (64) and (66)–(69) into (59) and (60), one obtains

(2) and (3) where ll~”(T-), 13~M(r), 13~E(T-), and ll~E(r) are

1Strictly speaking, [13, (57)] is not correct because the contribution due to
the triviat root of J& was omitted; correction was necessary before use. See
[15, Section 80].

given by (34)-(37) in which +~M and @~E are given by (46)

and (52). Thus, the EFIE solution of Section III is verified.
For the circular cavity, the EFIE solution presented in the

last paragraph of Section III is much simpler than the modal

expansion solution (59) and (60) where quantities therein are
defined in the rest of the paragraph containing (59) and (60). In

the second from the last paragraph of Section V however, this
modal expansion solution was reduced to the EFIE solution.
This reduction was done by evaluating the summations with
respect to m in the S’s in (59) and (60). In [4], the Green’s

dyadic functions ~.(r’lr) and ~m(r’lr) therein were simplified

to [4, (36), (40)] by evaluating the summations with respect
to p (please correct [4, (36), (40)] by subtracting the ~ terms

instead of adding them). Hence, the modal expansion (59) and

(60) can be alternatively reduced by evaluating the summations

with respect to p therein.

VI. DISCUSSION

Consideration was given to the problem of determining

the electromagnetic field in a source-free cavity excited by
a known tangential electric field in an aperture in its wall.

This problem can be solved by means of the modal expansion

method described in [2, ch. 5], [3, ch. 3], and the references

cited therein. Actually, the method described in [2] and [3] is
most often called the Green’s dyadic function method rather

than the modal expansion method. However, since the Green’s

dyadic function in [2] and [3] is that inferred by the modal
expansion, the method described in [2] and [3] is, in effect,
the same as the modal expansion methcld.

To solve the problem cited in the previous paragraph, the

EFIE method is, for several reasons, often more efficient than

the modal expansion method. The actual field is source-free

inside the cavity. In the EFIE method, the representation of the

field is source-free inside the cavity. In the modal expansion
method, the field inside the cavity is expressed as a sum of

mode fields. Each mode field is source-free, but only at its
resonant frequency. Hence, it is unlikely that any mode field
is source-free at the operating frequency. As a result, the modal
expansion is an expansion of a field that is source-free inside
the cavity in terms of fields that are not source-free inside
the cavity. Furthermore, the modal expansion for the electric

field must converge to EA immediately inside a hypothetical

perfectly conducting wall that closes the aperture and must
converge to zero exactly on this wall. Here, EA is the aperture
field and “inside” means on the side facing the interior of

the cavity. Consequently, the modal expansion for the electric
field must converge to a field that is discontinuous at all
points of the aperture where E.4 is not zero. Since each
electric field in the modal expansion is continuous, the modal
expansion for the electric field must converge nonuniformly
and thus very slowly near points of the aperture where EA is
not zero. For an arbitrarily shaped cavity, the EFIE method
is easier to implement than the modal expansion method.
The EFIE method requires numerical solution of only one
integral equation at the operating frequent y whereas the modal
expansion method requires determination of each frequency
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at which the associated homogeneous integral equation has a
nontrivial solution.

If the EFIE method is often more efficient than the modal
expansion method, then why is the EFIE method not even
mentioned in [2] and [3]? Four reasons can be given.

1) The expositions in [2] and [3] treat the more gen-

eral problem where sources can be inside the cavity.

The EFIE method is not directly applicable when such

sources are present.
2) If knowledge of the resonant frequencies is desired, then

solution by the modal expansion method is desirable be-

cause these frequencies appear explicitly in this solution.
If solution is by the EFIE method, then the resonant
frequencies must be computed as the frequencies at
which this solution becomes infinite. Compare the modal
expansion solution (59) and (60) where the roots z~m
and x~m appear explicitly (indicating that they must

have been determined during the course of the solution)

with the EFIE solution presented in the last paragraph
of Section III where these roots do not appear explicitly.

3) The modal expansion solution is especially simple when
the cavity is resonant or nearly resonant; in this case, the
modal expansion, which is generally a triple summation
[2, p. 383], is dominated by one term, namely the
resonant mode.

4) The authors of [2] and [3] may have deemed the EFIE
too simple to include in their expositions.

ACKNOWLEDGMENT

The author acknowledges helpful discussions with Prof.

Roger F. Barrington.

REFERENCES

11] R. F. Barringtonand J. R. Mautz,“A generalizednetworkformulation
for apertureproblems,”IEEE Trans. Antennas Propagat., vol. AP-24,

pp. 870-873, NOV.1976.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

R. E. Collin, Field Theory of Guided Waves, New York: IEEE Press,
1991.
J. Van Bladel, Singular Electromagnetic Fields and Sources. New
York: Oxford University Press, 1991,
A. Hadidi and M. Hamid, “Electric and magnetic dyadic Green’s
functions of bounded regious,” Can, J Phys., vol. 66, pp. 249–257,

Mar. 1988.
D. T. Auckland and R, F. Barrington, “A nonmodal formulation for
electromagnetic transmission through a tilled slot of arbitrary cross
section in a thick conducting screen,” IEEE Trans. Microwave Theory
Tech., vol. MTT-28, pp. 548-555, June 1980.
J. R. Mautz and R. F. Barrington, “Boundary formulations for aperture
coupling problems,” AE~, vol. 34, pp. 377–384, Sept. 1980.
R. F. Barrington and J. R. Mautz, “Electromagnetic coupling through
apertures by the generalized admittance approach,” Coqrut. Phys.
Conwmm., vol. 68, pp. 1942, 1991.
J. M. Jin and J. L Volakis, “A finite element–boundary integral formula-
tion for scattering by three-dimensional cavity-backed apertures,” IEEE
Trans. Antennas Propagat., vol. 39, pp. 97-104, Jan. 1991.
R. F. Barrington, Time-Harmonic Electromagnetic Fields. New York:
McGraw-Hill, 1961.
J. Van Blade], Electronragnetic Fields. New York: McGraw-Hill, 1964.
N. Morita, N. Kumagai and J. R. Mautz, Integral Equation Methodsfor
Electromagnetic. Boston: Artech House, 1991.
R. F. Barrington, Field Computation by Moment Methods. New York:
Macmillan, 1968. Reprinted by Piscataway NJ: IEEE Press, 1993.
A. Erd&lyiet al., Higher Transcendental Functions, vol. 2. New York:
McGraw-Hill, 1953.
M. Abramowitz and 1. A. Stegun, Eds., Handbook of Mathemati-
cal Functions. Washington, D.C.: U.S, Government Printing Office,
1964.
R. V. Churchill and J. W. Brown. Fourier Series and Boundarv Value
Problems, 3rd ed. New York: McGraw-Hill, 1963.

Joseph R Mautz (S’66-M’67-SM”75) was born
in Syracuse, NY, on April 29, 1939. He received
the B.S., M.S, and Ph.D. degrees in electrical en-
gineering from Syracuse University, Syracuse, NY,
in 1961, 1965, and 1969, respective y.

Until July 1993,he was a research associate in the
Department of Electrical and Computer Engineer-
ing, Syracuse University, working on radiation arrd
scattering problems. His primary fields of interest
are electromagnetic theory and applied mathematics,
He is presently unemployed.


