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On the Electromagnetic Field in a Cavity
Fed by a Tangential Electric Field
in an Aperture in its Wall

Joseph R. Mautz, Senior Member, IEEE

Abstract—Heretofore, the electromagnetic field produced by a
specified tangential electric field in an aperture in the wall of an
arbitrarily shaped cavity has most often been expanded in terms
of cavity modes. An alternative approach, that of the electric field
integral equation is presented. In this approach, the cavity field
is expressed as the field of a surface density of tangential electric
current, or a surface density of tangential magnetic current,
or a combination of surface densities of tangential electric and
magnetic currents on the boundary of the cavity. Each surface
density is characterized by a single tangential vector function
which is determined by the integral equation requiring that
the part of the electric field tangent to the boundary of the
cavity must reduce to the specified tangential electric field in the
aperture and zero elsewhere on the boundary of the cavity. The
electric field integral equation method is specialized to more easily
determine the field inside an arbitrary cylindrical cavity excited
by a tangential electric field in an aperture in its lateral wall. The
method is further specialized to a circular cavity.

I. INTRODUCTION

ONSIDER an arbitrarily shaped cavity that is source-
Cfree and bounded by a closed surface S that is perfectly
conducting everywhere except in an aperture. The boundary
conditions require that the tangential electric field vanishes on
the perfectly conducting part of S and is equal to a specified
vector function in the aperture. The problem is to find the
electromagnetic field in this cavity. It is of particular interest
to find the tangential magnetic field in the aperture because
this field is needed to carry out the generalized network
formulation for aperture problems whereby each aperture
that provides electromagnetic communication between regions
such as cavities, waveguides, and half spaces is closed with an
infinitely thin perfectly conducting plate, a magnetic current
sheet M is placed on one side of the plate, —M is placed on
the other side. and the tangential magnetic field on one side
of the plate is set equal to that on the other side [1].

The usual method of solution is to express the electric field
in the cavity as a linear combination of resonant electric fields,
and to express the magnetic field as a linear combination
of resonant magnetic fields. This method, called the modal
expansion method, is advocated in [2, Ch. 5], [3, Ch. 3],
and the references cited therein. The modal expansions of the
electric and magnetic fields in a bounded region are concisely
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given by [4, (4a) and (4b)] and supporting equations [4,
(5)—(17)]. Aside from two minor errors (“7 - e, = 0 does
not belong in [4, (6b)] and e, should be replaced by E, in
[4, (9b)]), the modal expansion method is clearly described
in [4]. Disadvantages of the modal expansion method will be
pointed out in Section VL

An alternative method called the EFIE (electric field integral
equation) method is presented to obtain the field inside an
arbitrarily shaped cavity due to a specified tangential electric
field in an aperture. In this method, the cavity field is expressed
as the field of a surface density of tangential electric current,
or a surface density of tangential magnetic current, or a combi-
nation of surface densities of tangential electric and magnetic
currents on the boundary of the cavity. The latter field is
obviously source-free inside the cavity. The above surface
density or combination of surface densities is characterized
by a single tangential vector function which is determined
by satisfying the boundary condition stated in the abstract.
This condition gives an integral equation that is similar to the
electric field integral equation encountered in the problem of
scattering of an exterior field by a perfectly conducting closed
surface. Variations of the EFIE method were used in [5] for the
two-dimensional cavity region of a thick slit, in [6] for a small
aperture in a cavity, and in [7, Section 8] for an aperture in
one of the end faces of a cylindrical cavity. Although the finite
element method [8] is well-suited for inhomogeneous regions
and the modal expansion method [4] is appropriate for regions
containing volume sources, the EFIE method is more suitable
and efficient for homogeneous geometries where the excitation
consists of a specified tangential electric field on the boundary
rather than volume sources.

In Section II, the EFIE method is specialized to more easily
determine the field inside an arbitrary cylindrical cavity excited
by a specified tangential electric field in an aperture in its
lateral wall. In Section III, the EFIE method is used to obtain
a novel solution for the field inside a circular cylindrical cavity
fed by a specified tangential electric field in an aperture in its
lateral wall.

II. THE ELECTRIC FIELD INTEGRAL EQUATION
METHOD FOR A CYLINDRICAL CAVITY

The field in a cylindrical cavity excited by a specified
tangential electric field in an aperture in one of its end faces
was obtained in [7, Section 8]. In the rest of the present section,
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the EFIE method is specialized to more easily determine the
field in a cylindrical cavity excited by a specified tangential
electric field in an aperture in its lateral wall.

Consider the cylindrical cavity that extends from z = 0 to
z = L along its z-axis and whose wall contour in the transverse
zy-plane is C. In its lateral wall, this cavity has an aperture
in which the tangential electric field E  is specified

Es=I1Ex(l2)+ 2Ea.(l.2) (1)

where [ and 2 are the unit vectors in the I- and z-directions
and ! is a curvilinear coordinate measured along C. Of course,
Ear = E4, = 0 on the wall, which is assumed to be perfectly
conducting.

In the EFIE method, the electric and magnetic fields E(r)
and H(r) inside the cylindrical cavity are expanded as axial
modes

P P
E(m) => EMr) + > ELR(r) 2)
p}—) P;l
H(r)=Y HMr)+> H®(r) (3)
p=0 =

where P is a sufficiently large integer. Also, EEM(T) and
H;FM(T) are the electric and magnetic fields of the surface
density 2J,(1) cos(k,z) of electric current on the associated
waveguide wall. This wall is the lateral wall of the cavity
extended to —oo in the negative z-direction and to +oo in
the positive z-direction. In (2) and (3), EEE(’I') and H;,FE(T)
are the electric and magnetic fields of the surface density
2M, (1) sin(k,2) of magnetic current on the associated wave-
guide wall. We choose
kp = p=0,1,2,... P )

so that the tangential components of E;‘EM('I‘) and E;;FE(T) will
vanish at z = 0 and z = L (look ahead at (13) and (14)). By
using extended lateral wall currents that go from z = —oc to
z = o0, end face currents are no longer required.

The fields HEM(’I'), EEM(T), E;‘EE(T). and HEE(’I‘) are
given by [9, Section (3-12)]

H™M(r) =V x (295 cos (kp2)) (5)

E™(r) = wev x HyM(r) (6)

pE('r) ~V x (29 sin (kp2)) ¢

H™(r) = —v x E™(r) ®)
jwp

where 4 is the permeability, € is the permittivity, and e/*?
time dependence is assumed. The quantitics /7 and ¢ F
are given as functions of curvilinear coordinates n and [ by

Py M (n, 1) = 41]/ T,(YVH? (ko — o' halno, 1)l (9)

$IE(n,1) = /M(l YHS? (k,lp — ') ha(no, I')dI'. (10)

Here, n is such that (n,l, z) form a right-handed orthogonal
curvilinear coordinate system. On C, the n-direction is out-
ward from the cavity and n = ng where n, is constant over all
C. In (9) and (10), Héz) is the Hankel function of the second
kind of order zero, p is the radius vector from the origin in the
transverse plane to the point whose curvilinear coordinates are
(n,1) in the transverse plane, p’ is the transverse radius vector
from the origin to the point on C' whose curvilinear coordinates
are (ng,l"), and h; is the metric coefficient {10, (162) on p.
496] associated with I. Moreover,
ko =4/ k? ~ k2 (1)

where k = w,/pe.

The expressions of (5)—(8) in the curvilinear coordinate
system (n, [, z) are [10, (166)]

- 1 8¢TM .1 8¢TM
H() (hl ol lhn on

) cos (kpz) (12)

™y _ JkeT A_LWEM i1 é l/)TM .
E,; 7 (r) = k ):7 " on + T sin (kpz)
. .777 hl dwTM
k‘h hy (‘3n hn
d ™
+ Bl(hl 7 ) cos (ky2) (13)
TE 1 3¢TE .1 ;CE
=|-a=— — ; 14
E,"(r) ( ’nhl al lh o sin{k,z) (14)
TE —jk 1 6’1/)TE wTE
= i k
7 ==, [h an hl o | cos (kp2)
.7 0 h,a
Bl B
knh,hy | On hn 871
8 [ ha 00"\ .
1= , 15
+ Bl(hl a0 sin (k,z) (15)

where = /p/e and h,, and h; are the metric coefficients

associated with n and [, respectively. Now, 4™ and 4~
satisfy
2 TM , 12, TM _
V2N 4 2T — g (16)
2 TE | 1.2,,TE _
T2TE 4 k2TE = 0 a7

Equations (16) and (17) with V2 given by [10, (167)] simplify
the Z-components of EEM('r) and HEE(T) of (13) and (15):

™
g dkpn | 10PN 1O
E,"(r)= 7 [nhn o T sin (kpz)
o fn 2,0/, TM
— éﬁlﬁip—p— cos (kpz) (18)
- TE TE
B, _ ~dkp|. 1 0%y -1 99, I
H, (r)= o [nhn B lhl 3 cos (kpz)
.9 TE
-z ’;ﬂp sin (kpz). (19)
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Substituting (18) and (14) into (2), one has

. jk d’lﬁT\/I B la,L/}gE )
E(r) = np (khn B 7 ol sin (kpz)
1 oy

P ™
Jkpn d¢ s (k
; ( i T o ) )

- z(%) E k2™ cos (ky2).
p=0

A Fourier series expansion of (1) is

(20)

ZEAlp(l sin (kp2 -I—ZZEAZP Dcos(kyz) (21)

p=0
where
9 L
Eap(l) = —/ Eq(l, z)sin (kyz) dz (22)
Jo
Ea.p(1) = / E4.(l, 2)cos (kpz) dz (23)
in which
1 =0
’3”:{27 2;:12..‘. 2

Requiring that the /- and z-components of (20) reduce to those
of E 4 of (21) on the lateral wall of the cavity where n = ng,
one has

1 [aw;?%,n}
hin(ng.1) on .
Ghyn OV FM(no, 1)
khi(no, D) ol
_jkpmpy Mo, 1)
k
Substitution of (9) into (26) gives the integral equation

= Eap(1) (25)

= E (). (26)

2
L

2 | L (YHP (kylp — p)) hi(no, ) dll =
4k Jo

EA:p (Z)

(27)
where p is now the transverse radius vector to the point (ng, ).
(27) is an integral equation that can be solved numerically for
Jp. This integral equation is similar to the electric field integral
equation encountered in the two-dimensional problem of TM
scattering by a perfectly conducting cylinder.

As for the quantity [ £ Y (n, l)] peng I (25) differentiat-
ing both sides of (10) with respect to n, letting -2 5, operate on
H; () rather than on the result of integration, and then letting
n approach ng from inside the cavity, we see that

3¢EE(TL,1) 1
an oy

n_ﬂn{/ M (1)— H (%,

lim

-9 ) hl(no, l/) dl/}.
(23)

Substitution of (28) into (25) gives

lim

. .
N S S e
"—‘nO{‘ljhn(ng,l)/c P( )

a !
"—H(()z)(kplp—p’|)hl(n0,l)dl’}

on
jkpn 0% M (no.l)
khi(no,{) ol ’

= Bay(l) - (29)
The quantity &4, 1(no,l) is obtained by substituting the
solution J,(I') of (27) into (9) and then differentiating (9)
with respect to I. Once this is done. the entire right-hand side
of (29) is known. In the limit as n approaches ng from inside
the cavity, (29) becomes [11, Section 3.1.2]

M (1) + m/ M) [8 HP (kylp— o))

Jkym 31/)1?1“(710, 1)
khi(ng, 1) ol '

In contrast to that in (29), the integrand in (30) is not defined
at [’ = [. The integral in (30) must be evaluated by deleting a
section of ' containing the point / and passing to the limit as
the length of this section approaches zero. Equations (29) and
(30) are two different forms of the same integral equation. This
integral equation is similar to the electric field integral equation
encountered in the two-dimensional problem of TE scattering
by a perfectly conducting cylinder when the scattered field
is expressed as the field of z-directed magnetic current on
the surface of the cylinder. The integral equations (27), (29),
and (30) can be solved by a numerical procedure such as the
method of moments [12].

The numerical solutions for J, and M, are substituted
into expressions (9) and (10) for P and ¢TE. These
p’s determine E,M(r), H.“(r), ETE(T) and H,F(r)
according to (18), (12) (14), and (19), respectively. Finally,
ETM( ), H TM(’I‘) ETE(’I') and H_"(r) are substituted into
expressions (2) and (3) for the electric and magnetic fields in
the cavity.

nN=ng

. h;(no, l/) dll = EAlp(l) — (30)

III. THE ELECTRIC FIELD INTEGRAL
EQUATION METHOD FOR A CIRCULAR CAVITY

Consider the special case where the cylindrical cavity in
Section 1l is the circular cavity of radius a bounded by end
faces at z = 0 and z = L and the lateral wall at p = a.
The usual cylindrical coordinates (p, ¢, z) are used throughout
Section III. Equation (1) specializes to

Ex = ¢F (¢, 2) + 2E4.($, 2).

Equations (2)—(8) remain unchanged. However, Jp(l) and
M, (1) specialize to J,(¢) and M,($) so that (9) and (10)
become

™ _ e o N2 g (a0 ,
1/}17 (P»¢)—4j A Jp(¢')Hy (kolp—0'|)do" (32)

(3L

2m

M, (¢')HS”

a

U P(p-9) = o (koo —p))d¢’ (33)

where k, is given by (11).
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Equations (12), (18), (14), and (19) reduce to, respectively,

~ o, TM
H™(r) = (%a?:b ) cos(kpz) (34)

jhon (6T Gogm
% (p 39 +p 36 sin(k,z)

N ™™
_¢Qp

E™(r) =

'k2 TM
. <L”1¢*p> con(ly) 35)
56 TE 0 TE
EyB(r) = <_£ gﬁs +¢ ] sin(kpz) (36)

dp
_ k a TE Aa TE
Hy"(r) = ]znp (ﬁ ?,; + % el cos(kyz)

¢
k TE
(9_];5’7_) sin(kpz). 37)
Substituting (35) and (36) into (2), one has
P . 5,1, TM TE
R Jhpn 0 109 .
E(r)=p 2 L~ L sin(kyz

P /. T™ TE
; Jkpn 9% o :
+ 45;:: ( T 82) + 61/7) ) sin(k,z)

—3 <%7) Z 29T cos (ky2). (38)
p=0
A Fourier series expansion of (31) is
L
Es=¢ Z Eapp($) sin(kp2)
p,.__
+ zZEAﬂp cos(kyz) (39)

where Ea4p(¢) and E.i;,(¢) are given by (22) and (23) with
[ replaced by ¢. Requiring that the ¢- and z-components of
(38) reduce to those of F 4 of (39) on the lateral wall of the
cavity where p = a, one obtains, using (32) and (33), the
integral equations

k2

=R [V el - 1) 46 = Bacy(9)40
o o OHD (Rplp—p))
plgg_{zj M) g o

jk,,n) M, M(a, @) @1

:EA¢'P(¢)_ ( ka ad)

where p is the transverse radius vector to the point (a, ) in
(40) and (p, ¢) in (41), and “p — o~ means that p approaches
a from the interior.

Consider (40). Fourier series expansions of J,(¢) and
EAzp(ﬁb) are

N
= E {Ajpncos(ng) + By sin(ng)} (42)
n= 0
Ea.p(¢) = Z {A.pn cos (n¢) + Bpnsin(nd)}  (43)
n=0

where the B, and B,,o terms are to be omitted. In view
of the addition theorem for Hankel functions [9, (5~103)], the
approximation

N

Z {en HSF) (koa)

n=0

~cos(n(¢ — ¢'))},

HP (kolp - p']) = Tu(k,p)

p<a (44)

is introduced where N is a large integer and e, is given by
(24). On the left-hand side of (44), p and p’ are the transverse
radius vectors to the points (p,¢) and (a,¢’), respectively.
Substituting (42), (43), and (44) with p — o~ into (40) and
performing the integration, one finds that

( 27 > Z {{AJPW cos (ng) + Bpn sin (ng)}
(kpa)}
4 -
- Tn) Z {Azpn cos(ng) + Bepn sin(ng)}. (45)

x H(k,a)J,

Substituting (42) and (44) into (32), one sees that 1 ™ (p, ¢) is
the left-hand side of (45) with J,,(k,a) replaced by J,(k,p).
Equivalently, ¢, ™(p,¢) is the left-hand side of (45) with
the n'" term multiplied by J,(k,p)/Jn(ksa). Therefore,
PpM(p, ¢) is the right-hand side of (45) with the ™t term
multiplied by J,(k,p)/Jn(k,0):

Z{J pP)

n=0

-{A;f}lw cos{ng) +

M(p,¢) =

BIVsin(ng)}} (46)

where
™ Ik 47
Ap (k ZnJn(k, a))A (47)
™ __ jk
Bon = (kw ks )P “e

Consider (41). Fourier series expansions of M,(¢) and
Eagp(p) are

N
My(¢) =D {Atpn 008 (nd) + Barpn sin(ng)} (49)

n=0
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N
> {Aspn cos (1) + Bypasin (ng)}. (50)

n=0

Eagp(d) =

Substituting (44), (46), (49), and (50) into (41), one obtains

N
(%) nZ::O{{A]\[pn COS(N¢) + BJ\/[pn Sill(n¢)}
Tn(kea)}

N
nk,B.
=3 S| Agpn + —2522
{< ! kZa

n=>0

x H® (k,a)k,
) cos(ng)

nkpAzpn

" (B‘f’f’” T Tk

Substituting (49) and (44) into (33), one sees that '(/JEE( p,0) is
the left-hand side of (51) with &, J;, (k,a) replaced by J, (k,p)-
Equivalently, ¢, ®(p.¢) is the left-hand side of (51) with
the '™ term multiplied by J,,(k,p)/{k,J} (k,a)}. Therefore,
Uy E(p.¢) is the right-hand side of (51) with the n'™ term
multiplied by J, (k,p)/{k,J} (kpa)}:

S

n=0

) sin(n¢)} 51)

by o d) = (kop)

{ ALY cos(ng) + BF sin(ng) } } (52)
where
1 nk,B.
TE pBzpn
N e Ha J oo
TE _ 1 3 nkyAspn
558 = (e {2 - g 09

The results obtained in Section IIT can be concisely stated.
Namely. the electromagnetic field (E(r), H(r)) in the circular
cavity is given by (2) and (3) with H™(r), ETM(r), EX®(r),
and H TE(’r given in terms of wT“ and 1/)TE by (34)—(37)
where ¢T“ and 4% are given by (46) and (52).

IV. DIRECT SOLUTION OF THE HELMHOLTZ EQUATION

In this section, the quantities ¢y ™ of (46)~(48) and Wy of
(52)—(54) will be verified by direct solution of the Helmholtz
equation. In this solution, there is no explicit reference to
any surface current density. The expansions (46) and (52) for
it and P are, with the A,,’s and the B,,’s equal to
unknown constants, valid from the onset because each of the
functions J,,(k,p)cos(n¢g) and J,(k,p)sin(ne) satisfies the
Helmholtz equation and the space of their collection for (n =
0,1,2,...,N)and (p =0,1,2,..., P) becomes complete as
both N and P approach infinity. Note that although (46) and
(52) are valid everywhere inside the circular cylindrical cavity,
they are valid only for p < pum;, inside an arbitrary cylindrical
cavity where pmi, is the value of p at the boundary point
closest to the z-axis. Therefore, the method described here,
that of direct solution of the Helmholtz equation, is valid only
for a circular cylindrical cavity.

In the method of direct solution of the Helmbholtz equation,
the Ap.’s and the Bp,’s in (46) and (52) are evaluated by
requiring that the ¢- and z-components of the electric field
in the cavity reduce to those of F 4 on the lateral wall
(p = 0.0 < z < L). Using (39), (43), (50), and (38), one

obtains
jkp'q d
kp d¢ dp

I 5, TE
1/}3 Y Iy

p=a

N
= Z {Aépn COS(n(/)) + B¢>pn Sln(ng{))}

(55)
=0
1’» ny
= Z (Aupn c05(19) + Bpn sin(nd)}. (56

Substitution of (46) and (52) into (55) and (56) leads to (47),
(48), (53), and (54), thus verifying ¢ ™ of (46)~(48) and ¢T*
of (52)~(54).

V. THE MODAL EXPANSION METHOD

In this section, the modal expansion method is used to verify
the EFIE solution presented in the last paragraph of Section
1. The modal expansion method was used in [4] to find the
electric and magnetic dyadic Green’s functions of bounded
regions. A detailed discription of that method is contained in
{41 where the bounded region is a cavity excited by volume
distributions of electric and magnetic currents J and M inside
the cavity in addition to a specified tangential electric field on
the boundary surface S of the cavity. Setting .J and M to zero
and replacing # X E(r') by 2 x E4(r') in [4, Egs. (21) and
(23)], one obtains the following expressions for the electric
and magnetic fields £(r) and H(r) in the cavity:

E(r)= - / nx Eu(r') - Vx Z’e (' |r)ds’ (57)
S

H(r) = —jwe / X B 4(r')- Z*m (' |r)yds  (58)

s
where 7 is the umt normal vector that points outward from
5. Also, V' x G and Gm are ngen by [4, (22) and (24)].

Substituting these V' x G and Gm and (39) into (57)
and (58). using (50), (43). and [4, (26)~(28)], and finally
interchanging m and 7, one obtains

g -0
E(r) = ( Lo, b5 )
]Z; p 0
crt Oélm !
X {(kpa)spn a¢ + S C¢P"}
-asin(kyz) — Z (,0*— + ? 6¢) (SpnCipn)
on

- kya® sin (kpz) + 2 Z SpnCepncos(kpz)  (59)

p.n
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Hr) =§j< o+ faa¢)

pn

9C o
X {(s; I B

d¢
jcos(kyz)
“hy +E<pa¢ )

jka? cos(k 2)

~— k CLS/ C¢pn}

 (SpnCipn)
oc
- ;Z <k Son=gg + k§a5;n0¢pn)

o J sm(kpz)
kn

(60)

where n = 0,1,2,---,N and p = 0,1,2,---, P. Also, Cypp,
and C.,,, are the quantities in brackets on the right-hand sides
of (50) and (43), respectively. Furthermore,

- Tnmd, xnmp/a)
=2
mZ=1 332 o kzaz)Jn+1(mnM) 61
& - Jn(Tnmp/a)
Son =2 62)
o ,;:1 Ty (Thm, — £502) Int1 (Tnm) (
-2
SI = {kzaz’ n=0 }
P P
0, n=1,2,...
o /2 J (.Z‘/ p/a)
2 nm
P L W R (W - ) ) )
$w= (64)
- Tn(@hmp /@)
2 nm
Zl .%'/2 k2a2)(x/nzm - In’z)‘]n(x;zm)
=12, (65)
where @, is the m't positive root of J, and z,, is the

mt™ positive root of J!. Equations (61)—(63) are valid for
n =012 ...

Using [13, (54)~(57) on p. 72]' and [14, Formulas 9.1.27],
one obtains

Spn = ‘5:2;:‘;2; 0<p<a (66
Gom = k—;;i(spn— (—2)”) 0<p<a (67)
%nzzﬁg%%? 0<p<a (69
§;n=k%—1a§(5;n—%(§)”), 0<p<a (69
Equations (66)—(68) are valid for n — 0,1,2, . ... However,

(69) is valid only forn = 1,2,. Accordmg to (64) S o = 0.
Substituting (64) and (66)—(69) into (59) and (60), one obtalns
(2) and (3) where H};M (r), EEM (r), ETE('r) and TE(T) are

IStrictly speaking, [13, (57)] is not correct because the contribution due to
the trivial oot of J} was omitted; correction was necessary before use. See
[15, Section 80].

given by (34)~(37) in which ¢ and 7" are given by (46)
and (52). Thus, the EFIE solution of Section III is verified.

For the circular cavity, the EFIE solution presented in the
last paragraph of Section III is much simpler than the modal
expansion solution (59) and (60) where quantities therein are
defined in the rest of the paragraph containing (59) and (60). In
the second from the last paragraph of Section V however, this
modal expansion solution was reduced to the EFIE solution.
This reduction was done by evaluating the summations with
respect to m in tge S’s in (59H) and (60). In [4], the Green’s
dyadic functions G.(r'|r) and G,,,(r’'r) therein were simplified
to [4, (36), (40)] by evaluating the summations with respect
to p (please correct [4, (36), (40)] by subtracting the 2 terms
instead of adding them). Hence, the modal expansion (59) and
(60) can be alternatively reduced by evaluating the summations
with respect to p therein.

VI. DISCUSSION

Consideration was given to the problem of determining
the electromagnetic field in a source-free cavity excited by
a known tangential electric field in an aperture in its wall
This problem can be solved by means of the modal expansion
method described in [2, ch. 5], [3, ch. 3], and the references
cited therein. Actually, the method described in [2] and [3] is
most often called the Green’s dyadic function method rather
than the modal expansion method. However, since the Green’s
dyadic function in [2] and [3] is that inferred by the modal
expansion, the method described in [2] and [3] is, in effect,
the same as the modal expansion method.

To solve the problem cited in the previous paragraph, the
EFIE method is, for several reasons, often more efficient than
the modal expansion method. The actual field is source-free
inside the cavity. In the EFIE method, the representation of the
field is source-free inside the cavity. In the modal expansion
method, the field inside the cavity is expressed as a sum of
mode fields. Each mode field is source-free, but only at its
resonant frequency. Hence, it is unlikely that any mode field
is source-free at the operating frequency. As a result, the modal
expansion is an expansion of a field that is source-free inside
the cavity in terms of fields that are not source-free inside
the cavity. Furthermore, the modal expansion for the electric
field must converge to E 4 immediately inside a hypothetical
perfectly conducting wall that closes the aperture and must
converge to zero exactly on this wall. Here, F 4 is the aperture
field and “inside” means on the side facing the interior of
the cavity. Consequently, the modal expansion for the electric
field must converge to a field that is discontinuous at all
points of the aperture where E 4 is not zero. Since each
electric field in the modal expansion is continuous, the modal
expansion for the electric field must converge nonuniformly
and thus very slowly near points of the aperture where E 4 is
not zero. For an arbitrarily shaped cavity, the EFIE method
is easier to implement than the modal expansion method.
The EFIE method requires numerical solution of only one
integral equation at the operating frequency whereas the modal
expansion method requires determination of each frequency
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at which the associated homogeneous integral equation has a
nontrivial solution.

If the EFIE method is often more efficient than the modal
expansion method, then why is the EFIE method not even
mentioned in [2] and [3]? Four reasons can be given.

1) The expositions in [2] and [3] treat the more gen-

eral problem where sources can be inside the cavity.
The EFIE method is not directly applicable when such
sources are present.

2) If knowledge of the resonant frequencies is desired, then
solution by the modal expansion method is desirable be-
cause these frequencies appear explicitly in this solution.
If solution is by the EFIE method, then the resonant
frequencies must be computed as the frequencies at
which this solution becomes infinite. Compare the modal
expansion solution (59) and (60) where the roots Znm
and z/,. appear explicitly (indicating that they must
have been determined during the course of the solution)
with the EFIE solution presented in the last paragraph
of Section III where these roots do not appear explicitly.

3) The modal expansion solution is especially simple when
the cavity is resonant or nearly resonant; in this case, the
modal expansion, which is generally a triple summation
[2, p. 383], is dominated by one term, namely the
resonant mode.

4) The authors of [2] and [3] may have deemed the EFIE
too simple to include in their expositions.
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